Three Dimensional Reconstruction of Random Radiation Sources

Joseph Rosen

The degree of the spatial coherence of an electromagnetic field is a useful function mainly for two reasons. First it provides information on the spatial coherence of light sources. Second, due to the Van Cittert-Zernike theorem, knowledge of the coherence distribution induced by a source, enables one to compute its shape. Explicitly, it is manifested in this theorem that the two-point degree of coherence in the far field of a quasi-monochromatic, spatially incoherent light source is proportional to the Fourier transform of the source's planar intensity distribution. Therefore, by measuring the two-point degree of coherence in the far field, one can image the source distribution. This imaging technique is, among others, the theoretical basis of the very long base-line interferometers used in astronomy. However, this technique has been limited to imaging of planar two-dimensional objects.

Log in or become a member to view the full text of this article.


This article may be available for purchase via the search at Optica Publishing Group.
Optica Members get the full text of Optics & Photonics News, plus a variety of other member benefits.

Add a Comment